

Learning to Simulate Self-driven Particles System with **Coordinated Policy Optimization** Code and demo video decisionforce.github.io/CoPO/

Zhenghao Peng[§], Quanyi Li[‡], Chunxiao Liu[†], Bolei Zhou[§] [§] CUHK [†] SenseTime Research [‡] Centre for Perceptual and Interactive Intelligence, CUHK

Task

- Realistic Crowd Actions
- Safe Driving
- Social Behaviors

Environments powered by:

METADRIVE

Method

Step 1: Local Coordination for each policy

Step 2: Global Coordination to update global LCF

Local Coordination: Update policies to maximize coordinated reward Coordinated Reward: $r_1^C = \cos(\Phi)r_1^I + \sin(\Phi)r_1^N$, where $\Phi \in [-90^\circ, 90^\circ]$ is LCF Maximize this reward via PPO loss

Global Coordination: Adjust LCF to maximize global reward Meta-gradient to update Φ : $\nabla_{\Phi} J^{G}(\theta^{new}) = \nabla_{\theta^{new}} J^{G}(\theta^{new}) \nabla_{\Phi} \theta^{new}$