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Exp I: Generating the semantic floor maps
Our VPN can integrate the local top-down-view maps

into a semantic floor map. Since the ray spread into the
top-down-view camera is not in parallel, we can not splice
them directly. Thus we crop the central area of the predicted
top-down-view map so that we can approximately assume
that the ray emitted from this area is in parallel. We integrate
the top-down-view maps in a max-pooling manner according
to the predicted confidence map. We first discrete the whole
map into a 250×250 grid map. At each grid point, we predict
the corresponding top-down-view map and the confidence
map. We bilinearly upsample it to Hp ×Wp to match the
real-to-grid scale. Wp and Hp are given as follows,

Wp = WI ×
Lv

Wm
, Hp = HI ×

Lv

Hm
, (1)

where Lv is the actual scope of the field of local top-down-
view patch, Wm and Hm are the actual width and height of
the whole map, and WI , HI are the width and height of the
final shown image. Wm and Hm can be computed by the
scale factor of each scene. Then we crop the 24P × 24P
central area of the HpWp upsampled map and then paste it
to the whole map in a max-pooling manner according to the
confidence map. Some qualitative results are shown in Fig-
ure 1. The integrated semantic floor map shows the spatial
layout of all the objects in the environment. , which pro-
vides valuable information for motion planning and obstacle
avoidance in mobile robot.

Exp II: Exploration with top-down-view map

Humans exploring space will head to space which they
have not visited. This intuition reflects that exploration re-
quires the agent to identify free space as well as remember
which areas it has not visited yet. To achieve this goal, we
make the agent able to identify the free space by training it
to predict the top-down-view free-space map. Along with
the state map which records the already-executed action
sequence, the agent can remember the unvisited area.

Top-down-view free-space map. We train the VPN to
predict Top-down-view free-space map. Different from the
semantic map, the free-space map has only two categories,
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Figure 1: Integrating the local top-down-view semantic maps
into a global semantic floor map for two scenes. The ground
truth semantic floor map is generated from the ground truth
top-down-view semantic maps. As a reference, the 3D scene
model is also shown below.

obstacle, and free space, which are denoted by 0, 1 respec-
tively.

State map. Due to the ideal assumption made above, by
memorizing the previous actions it has executed, the agent
can easily build the state map which contains the information
of the already-visited positions. We label the unvisited pixels
as 0 and the already-visited pixels as 1 on the state map.

Exploration algorithm. We detail the navigation policy
decision algorithm in Algorithm 1. At each time step t, we
make the decision at and update the agent with the next
top-down-view free-space map Tt+1 and state map St+1. In
both the top-down-view free-space map and the state map,
we assume that the agent is always at the center of the map.

Result and comparison

To demonstrate that VPN can help navigation, we com-
pare it with the following baselines for exploration. Random
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Figure 2: Cross-view segmentation on House3D using the input modality of RGB image, the depth map, and semantic mask
respectively. Here the number of input views is fixed as 4. Ground truth is shown on the right.
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Figure 3: Predicting invisible objects: In (a), although the
input semantic masks do not indicate that there is a table
beside the chair, our model predicts it on the top-down-view
mask based on the prior that tables and chairs usually appear
together. In (b), in the Back view input mask, only a very
small part of the second door can be observed, our model
segments the door fully in the top-down-view prediction
based on the shape prior to the door. Here the prediction is
done by 2-view VPN with semantic input on the left.

walk: Random walk agent randomly chooses one action
from Forward, Back, Right-forward and Left-forward, at
each time step. Top-down-view navigation with ground
truth: By planning on the ground truth top-down-view free-
space map with Algorithm 1, we can obtain the upper-bound
performance of our method. The difference is that in our
case the top-down-view free-space map is predicted by VPN,
rather than the ground truth. Imitation learning without
top-down-view: A reactive CNN network learns to imitate
the expert exploration trajectories given the first-view obser-
vations. The trajectories are generated by the baseline above
with a top-down-view ground truth map. Network inputs
are 4 first-view depth images. Here we choose depth map
as input since it achieves better performance, 93.5% pixel

Algorithm 1 Exploration policy decision
Input: A top-down-view free-space map Tt and a state map
St at time step t, where Tt, St ∈ {0, 1}L×L.
Output: Policy action at, where at ∈ {Forward, Back,

Left-forward, Right-forward, Done}.
1: Ut ← Tt

⋂
¬St; at ← Done; ds ← +∞

2: Dt ← computeDistMap(Ut)
3: for a in {Forward,Back, Left-forward,Right-

forward} do
4: d = execute(a)
5: if ds > d then
6: ds ← d; at ← a

computeDistMap(): Compute the shortest distance of
each map pixel to the unvisited free-space region.
execute(): Return the shortest distance of the pixel to which
the agent transit if execute the action a.

accuracy on this binary classification task than the semantic
mask, which yields 64.2%. We also input the state map to
indicate the already-visited area. We extract 729 trajectories
for the training set and 121 trajectories for the validation set
to train the navigation agent. Each trajectory contains 150
states which are all labeled with expert policy.

Table 1: Comparison on exploration.

Method Coverage Area

Random walk 260.3 ± 82.7

IL w/o top-down-view 443.8 ± 340.6

Top-down-view navigation 673.8 ± 349.8

Top-down-view navigation with GT 1070.8±326.2

We run the algorithm directly on our predicted top-down-
view map. For testing all the methods, we start the episode
by initializing the state maps from zero, indicating that all
free space is yet to be visited. Coverage Area is defined to
measure exploration performance. We randomly choose 100
starting points on a scene map. For each starting point, we
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(b) IL w/o top-view

Coverage area: 632

(a) Random walk 

Coverage area: 326

(c) Top-view navigation

Coverage area: 991

(d) Top-view navigation with GT

Coverage area: 1163

Figure 4: Examples of the surrounding exploration. Each
method has the same start point. The trajectory is shown and
the explored area is lighted up.

let the agent explore the space for 300 steps and compute the
coverage area. Then final results are obtained by averaging
the coverage area of these 100 episodes. Table 1 plots the
exploration result for different methods and Figure 4 shows
some sample trajectories. We can see that equipped with the
predicted top-down-view map from our VPN, the agent can
act almost like an expert.

More results of paper
In this section, we include some extended results which

are mentioned in our original paper. We show the qualitative
segmentation results of all modalities in Figure 2. And in
Figure 3, we show some interesting cases where we find that
our VPN can predict invisible objects. Finally in Figure 5,
we demonstrate more adaptation results in the real world.

Visual Interpretation
In order to better understand what the trained model has

learned during the task of cross-view semantic segmentation,
we apply gradient-based class activation mapping (Grad-
CAM) [1] to identify relationships between the generated
top-down semantic mask and the input views. In particular,
given a particular (x, y) coordinate in the generated semantic
mask and the predicted class at that location, we identify
the spatial regions across all of the input views that are
most relevant to the prediction at that location. Figure 6
and Figure 7 show the highlighted regions across four views
when one location is clicked on the predicted top-down-view
mask.

Here we use the 4-view model with input modality as
RGB images. We visualize the input observation as RGB
images. For each scene, we select 4 points on different
objects in the scene to interpret. We can see from these
examples that our model produces very reasonable heat map
results, which shows that VPN can truly understand the
spatial configuration of the input spatial scenes.
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Figure 5: More qualitative results about sim-to-real adaptation.
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Figure 6: Visualizing the spatial regions of different views that contribute most to the prediction. In each example, for each of
the four pointed coordinates on the predicted mask, we highlight the spatial regions that are most relevant to the prediction.
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Figure 7: Visualizing the spatial regions of different views that contribute most to the prediction. In each example, for each of
the four pointed coordinates on the predicted mask, we highlight the spatial regions that are most relevant to the prediction.


